IDCoM Research Projects

Research Projects at the Institute for Imaging, Data and Communications (IDCoM). You can search keywords within Project Titles.

We also have a number of Imaging, Data and Communications PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Titlesort descending Principal Supervisor Project Summary
A systematic study of physical layer network coding: From Information-Theoretic Understanding to Practical DSP Algorithm Design

Dr Tharmalingam Ratnarajah

High spectral efficiency is the holy grail of wireless networks due to the well-known scarcity of radio spectrum. While up to recently there seemed to be no way out of the apparent end of the road in spectral efficiency growth, the emerging approach of Network Coding has cast new light in the spectral efficiency prospects of wireless networks [1]. Initial results have demonstrated that the use of network coding increases the spectral efficiency up to 50% [2, 3]. Such a significant performance gain is crucial for many important bandwidth-hungry applications such as broadband cellular systems, wireless sensor networks, underwater communication scenarios, etc.

GREENNET An early stage training network in enabling technologies for GREEN radio

Professor Harald Haas

Greenet is an Initial Training Network (ITN) Marie Curie project that is focused on the analysis, design, and optimization of energy efficient wireless communication systems and networks.

HARP: High capacity network Architecture with Remote radio heads & Parasitic antenna arrays

Dr Tharmalingam Ratnarajah

To bring distributed multi-antenna wireless access to reality by combining two powerful emerging technologies:

radio remote heads (RRHs), which allow for widely geographically distributed access via radio-over-fibre connections to a central base station; and electronically steerable passive array radiators – ESPARs, which provide multi-antenna-like functionality with a single active RF chain only
In-situ Chemical Measurement and Imaging Diagnostics for Energy Process Engineering

Prof Hugh McCann and Prof Walter Johnstone

The primary focus of the programme proposed here is to build across two universities (Strathclyde and Edinburgh) a world leading UK research, development and applications capability in the field of in-situ chemical and particulate measurement and imaging diagnostics for energy process engineering. Independently, the two university groups already have globally eminent capabilities in laser-based chemical and particulate measurement and imaging technologies. They have recently been working in partnership on a highly complex engineering project (EPSRC FLITES) to realise a chemical species measurement and diagnostic imaging system (7m diameter) that can be used on the exhaust plume of the largest gas turbine (aero) engines for engine health monitoring and fuels evaluation. Success depended on the skills acquired by the team and their highly collaborative partnership working. A key objective is to keep this team together and to enhance their capability, thus underpinning the research and development of industrial products, technology and applications. The proposed grant would also accelerate the exploitation of a strategic opportunity in the field that arises from the above work and from recent recruitment of academic staff to augment their activities. The proposed programme will result in a suite of new (probably hybrid) validated, diagnostic techniques for high-temperature energy processes (e.g. fuel cells, gas turbine engines, ammonia-burning engines, flame systems, etc.). 

Laser Imaging of Turbine Engine Combustion Species (LITECS)

Dr Chang Liu

The ultimate ambition of the LITECS research programme is to reduce the environmental impact of aviation and industrial gas turbine engines by developing and deploying new measurement technologies to enhance the understanding and modelling of combustion and emissions generation processes and the role of alternative fuels.

MacSeNet: Machine Sensing Training Network

Professor Mike Davies

The aim of this Innovative Training Network is to train a new generation of creative, entrepreneurial and innovative early stage researchers (ESRs) in the research area of measurement and estimation of signals using knowledge or data about the underlying structure.

Massive MIMO for Future Wireless Communication Networks

Dr Tharmalingam Ratnarajah

The spectrum crunch is a global phenomenon, where wireless networks constrained by scarce spectrum resource cannot keep pace with the explosion in mobile broadband use, particularly at a time when smartphones and tablets are becoming even more prevalent and heavily used. Every new opportunity has to be maximally exploited to cope with this spectrum deficit and meet the demands of explosive broadband usage by pushing more data through existing spectrum. Massive multiple-input multiple-output (MIMO), an advanced antenna technology only developed in 2010 offers one such opportunity.

Optical Free-Space Backhaul and Power for Energy Autonomous Small Cells

Professor Harald Haas

The central aim of the project is the design of a novel simple structure for a communication base station. Its operation will be based on off-the-shelf optical components such as white LEDs, laser-diodes and photo-diodes.

RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories

Dr Nicholas Polydorides

Modern manufacturing involves highly controlled and automated processes meticulously designed to deliver products to specific needs within strict specifications and in a cost-efficient and sustainable way. Sensors capture continuous data streams about the state of the process, e.g., equipment and the product, to ensure performance in variable and often harsh conditions — however, the ability to analyse this data in real-time offers unique advantages currently out of reach. Learning to calibrate its operation from sensor data, monitor its health status and make accurate forecasts on product outcomes and maintenance requirements are process attributes of future autonomous factories.

Robust Repeatable Respiratory Monitoring in EIT

Professor Hugh McCann

The project aims at developing a new electrical impedance tomography (EIT) device for medical use. This device, called ReMEIT, should enable 3D absolute conductivity image reconstruction. To achieve this goal the project intends to capture the exact positions of the measuring electrodes and the exact thoracic shape using an optical shape capture device. These are absolutely novel approaches in EIT imaging that, if successful, could represent an immense progress in EIT research and a big step towards reliable clinical use of this technology. The project partners not only plan to develop the device but they also propose a strategy for its validation under invivo conditions. At first, healthy volunteers with no history of lung disease will be examined by ReMEIT and, later, the EIT device will be applied in critically ill patients suffering from various pulmonary diseases. In the former case, reference data will be obtained by magnetic resonance imaging (MRI), in the latter one, routine chest X-ray, computed tomography (CT)and MRI data will be utilised.

Pages

Subscribe to IDCoM Research Projects