IES Research Projects

Research Projects at the Institute for Energy Systems (IES). You can search keywords within Project Titles.

We also have many Energy Systems PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Titlesort descending Principal Supervisor Project Summary
TIDES: Tidal Demonstration for Energy Scheme

Professor David Ingram

A full tidal array has not been installed anywhere, commercially to date. A number of the leading turbine manufacturers have part or full scale working prototypes which are under-going testing in various sites the majority of which are enclosed in semi-test environments. In order to move this nascent technology into the commercial arena and expedite market deployment, it is necessary to establish an array of turbines in one site to verify the performance capability and environmental characteristics of a full array.

TROPOS: Modular Multi-use Deep Water Offshore Platform Harnessing and Servicing Mediterranean, Subtropical and Tropical Marine and Maritime Resources

Professor David Ingram

TROPOS is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the "Ocean of Tomorrow" call OCEAN 2011.1 – Multi-use offshore platforms. The TROPOS Project aims at developing a floating modular multi-use platform system for use in deep waters, with an initial geographic focus on the Mediterranean, Tropical and Sub-Tropical regions, but designed to be flexible enough so as to not be limited in geographic scope.

TeraWatt: Large scale interactive coupled 3D modelling for wave and tidal energy resource and environmental impact (Remit 1 MASTS Consortium Proposal)

Dr Vengatesan Venugopal

Scotland has substantial wave and tidal energy resources and is at the forefront of the development of marine renewable technologies and ocean energy exploitation. The next phase will see these wave and tidal devices deployed in arrays, with many sites being developed. Although developers have entered into agreements with The Crown Estate for seabed leases, all projects remain subject to licensing requirements under the Marine Scotland Act (2010).

The Edinburgh Fluid Dynamics Group

Dr Ignazio Maria Viola

The Edinburgh Fluid Dynamics Group (EFDG) webpage can be found below:  

TorqTidal: Mitigating Torque Pulsations in Tidal Current Turbines

Dr Jonathan Shek

TorqTidal seeks to provide control strategies for tidal current turbines that will reduce the risk of failure and increase the lifetime of device components without increasing capital costs. This will act to increase investor confidence and drive down the LCOE, which is a key step in helping the UK to exploit its significant tidal energy resource.

WindSurf - A self-starting, active-pitch, vertical-axis wind turbine

Dr Jonathan Shek

WindSurf aims to develop a core enabling technology - active blade pitching for a vertical axis wind turbine. This will allow wind turbines to operate in challenging wind conditions, to operate quietly and for new, lower maintenance turbine designs. WindSurf will open up new sites for wind energy: sites previously rejected because wind speeds were too low, variable or subject to swirling, or where noise nuisance would have been a concern. WindSurf will tackle all three parts of the energy trilemma: reducing emissions, increasing security of supply, and reducing cost.

X-MED: Extreme Loading of Marine Energy Devices due to Waves, Current, Flotsam and Mammal Impact

Dr Tom Bruce

Marine energy should make a substantial contribution to the UK renewable energy target of 30% electricity by 2020. Tidal stream turbines are a more mature technology than wave energy devices while the potential of wave energy is considerable. There is a growing capability and confidence in the loading and performance of marine energy devices in operating conditions as designs rapidly develop. However knowledge of extreme loading is less mature and indeed there is some uncertainty about their origin.

Pages

Subscribe to IES Research Projects