IES Research Projects

Research Projects at the Institute for Energy Systems (IES). You can search keywords within Project Titles.

We also have many Energy Systems PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Title Principal Supervisorsort descending Project Summary
ElmoNet Q Project

Dr Sasa Djokic

Impact of increasing penetration of electrical vehicles and photovoltaic installations on power quality in public low voltage distribution networks

FLOWBEC - FLOW and Benthic Ecology 4D

Dr Angus Creech

The FLOWBEC project aims to improve the understanding of how the physical behaviour of the water such as currents, waves and turbulence at tide and wave energy sites influences the behaviour of marine wildlife, and how tide and wave energy devices might alter the behaviour of such wildlife.

Small Scale Hydrogen Storage for Integrated Energy Systems

Dr Dimtri Mignard

The integration of a greater proportion of renewable energy, compounded by the rise in small scale distributed generation, is making it increasingly difficult to balance demand and supply of electricity without adequate energy storage facilities. However, the effective deployment of these solutions at any particular location will require an understanding of the local energy system at the time. Conversion between energy vectors will also be required not just to meet storage needs, but also to allow major shifts from fossil fuels to low carbon energy in applications like heat and transport. Hydrogen is an energy vector that is particularly versatile from this viewpoint. 

Development and Evaluation of Sustainable Technologies for Flexible Operation of Conventional Power Plants

Dr Hannah Chalmers

The increasing amounts of renewable energy present on the national grid reduce C02 emissions caused by electrical power but they fit into an electrical grid designed for fossil fuels. Fossil fuels can be turned on and off at will and so are very good at matching variations in load. Renewable energy in the form of wind turbines is more variable (although that variability is much more predictable than most people think) and there is a need for existing power plants to operate much more flexibly to accommodate the changing power output from wind, tidal and solar power.

COPTIC: Co-optimisation of CO2 transport, injection and capture

Dr Hannah Chalmers

Statement of the Project Development of a very sound expertise on CO2 transportation infrastructure Identification and understanding of uncertainties during integration of CO2 capture, compression, injection and reservoir units together with CO2 transportation system Provide industry and academia with the required technical knowhow in this context
EURECA - Effects of utilisation in real-time on electricity capacity assessments

Dr Hannah Chalmers

EURECA, the Effects of Utilisation in Real-time on Electricity Capacity Assessments, investigates the operating regimes of thermal power plants in future generation portfolios with large amounts of variable renewable energy sources (VRE). The impacts of additional VRE and energy storage capacity on the operating profiles and flexibility of thermal power plans are investigated using a unit commitment and energy storage optimisation model.

On the Leading Edge Vortex in Highly Turbulent Flow Conditions

Dr Ignazio Maria Viola

Bio-inspired foils for low-speed performance of renewable energy converters

The Edinburgh Fluid Dynamics Group

Dr Ignazio Maria Viola

The Edinburgh Fluid Dynamics Group (EFDG) webpage can be found below:  

Off-grid Hybrid Energy Systems

Dr Jonathan Shek

This project aims to innovate and improved solutions for the management of power flows in a hybrid electrical power system, to provide a secure, reliable, and high quality supply to varying load demands. The expected research outcome is the design of a robust and fault-tolerant management system, featuring higher efficiency and improved techno-economic performance.

Optimal system sizing through linear programming Testing and analysis of an off-the-shelf hybrid system Novel control system design for optimised performance Lab testing and field testing
CAUSE - Control of wave energy Arrays Using Storage of Energy

Dr Jonathan Shek

There are 3 main objectives in this project:

Answer the research question: Can energy storage radically improve off-grid and on-grid control in wave energy arrays? How can it be done? Develop an electrical array model for wave energy, with energy storage and co-ordinated control Strengthen the partnership between the UK and Chinese Institutions for future research collaboration

 

Pages

Subscribe to IES Research Projects