IES Research Projects

Research Projects at the Institute for Energy Systems (IES). You can search keywords within Project Titles.

We also have many Energy Systems PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Titlesort descending Principal Supervisor Project Summary
EcoWatt2050

Prof Vengatesan Venugopal

The Scottish Government is committed to promoting substantial sustainable growth in its marine renewable industries. Agreements for sea bed leases are already in place for 2GW of wave and tidal developments, and projects are progressing through the licensing process. Strategic marine planning for future phases of wave, tidal and offshore wind development is now in progress. For marine renewables to significantly contribute to the low-carbon energy mix towards 2050, significant offshore development in the form of very large scale arrays will be needed.

Effective Marine Energy Design Subject to Ecological and Social Constraints

Professor Alistair Borthwick

Practical marine energy resources are subject to social and ecological constraints, such as conflict with other users of the sea and environmental protection. This research aims to contribute to a greater understanding of the practical constraints on marine energy developments, the extent to which they may limit the amount of power available for extraction and, most importantly, how energy production may be optimised within the limits set by these constraints. 

Electro-Mechanical Modelling of Tidal Turbines

Dr Jonathan Shek

The research in this project will focus on modelling full resource-to-wire dynamic models of tidal arrays in order to investigate and optimise their operation.  The expected impact of this study is providing industry with an understanding and guidelines of the applicability of the different electrical layouts to specific locations and size of the arrays.

Compare different generator technologies and control theories Validate models using real measured data Perform harmonic analysis and accurate loss modelling based on temperature/frequency variations Suggest cost-effective solutions for device developers
ElmoNet Q Project

Dr Sasa Djokic

Impact of increasing penetration of electrical vehicles and photovoltaic installations on power quality in public low voltage distribution networks

FASTBLADE, Structural Composites Research Facility

Conchúr Ó Brádaigh

FASTBLADE is commencing construction - see our facility site here.

The Structural Composites Research Facility (SCRF) is funded by a strategic equipment grant (EP/P029922/1). The grant started on the 1st of June 2017 and is due to complete on the 30sh of November 2020. The SCRF is to be setup as a Small Research Facility (SRF) and has been given the name FASTBLADE.

FASTBLADE will offer a suite of experimental and testing services to meet every client’s needs. The team can offer bespoke solutions to match every user’s needs and are supported by the world renown expertise and knowledge within the School of Engineering, University of Edinburgh.

FLOWBEC - FLOW and Benthic Ecology 4D

Dr Angus Creech

The FLOWBEC project aims to improve the understanding of how the physical behaviour of the water such as currents, waves and turbulence at tide and wave energy sites influences the behaviour of marine wildlife, and how tide and wave energy devices might alter the behaviour of such wildlife.

IDCORE: Industrial Doctoral Centre in Offshore Renewable Energy

Professor David Ingram

The drive to meet the UK’s ambitious deployment targets for offshore renewable energy technologies requires the development of new techniques and technologies to design, build, install, operate, and maintain devices in hostile environments at affordable economic cost with minimal environmental impact. It requires a supply of highly trained scientists and engineers to deliver their skills across the sector. The Universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford form a partnership to deliver the EPSRC/ETI Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

LEANWIND: Logistic Efficiencies and Naval Architecture for Wind Installations with Novel Developments

Dr Lucy Cradden

LEANWIND is a 4-year project that started in December 2013. It is led by a 31-partner consortium and has been awarded €10 million by the European Commission, but its total value amounts to €15 million.

The primary LEANWIND objective is to provide cost reductions across the offshore wind farm lifecycle and supply chain through the application of lean principles and the development of state of the art technologies and tools.

Land of the MUSCos

Professor Gareth Harrison

Present infrastructure service delivery, characterized by isolated supply streams for an uncontrolled demand, is uneconomical, inefficient, and ultimately unsustainable. What kinds of alternatives can be identified and implemented? In this project, we research and promote the establishment of Multi-Utility Service Companies, or MUSCos.

MARINET: Marine Renewables Infrastructure Network for Emerging Energy Technologies

Professor Ian Bryden

MARINET, the Marine Renewables Infrastructure Network, is a network of research centres and organisations that are working together to accelerate the development of marine renewable energy technologies - wave, tidal and offshore-wind. It is co-financed by the European Commission specifically to enhance integration and utilisation of European marine renewable energy research infrastructures and expertise. MARINET offers periods of free-of-charge access to world-class R&D facilities & expertise and conducts joint activities in parallel to standardise testing improve testing capabilities and enhance training & networking.

 

Pages

Subscribe to IES Research Projects