Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisor Research Institutes Project Summary
Electro-Mechanical Modelling of Tidal Turbines

Dr Jonathan Shek

Energy Systems

The research in this project will focus on modelling full resource-to-wire dynamic models of tidal arrays in order to investigate and optimise their operation.  The expected impact of this study is providing industry with an understanding and guidelines of the applicability of the different electrical layouts to specific locations and size of the arrays.

Compare different generator technologies and control theories Validate models using real measured data Perform harmonic analysis and accurate loss modelling based on temperature/frequency variations Suggest cost-effective solutions for device developers
TorqTidal: Mitigating Torque Pulsations in Tidal Current Turbines

Dr Jonathan Shek

Energy Systems

TorqTidal seeks to provide control strategies for tidal current turbines that will reduce the risk of failure and increase the lifetime of device components without increasing capital costs. This will act to increase investor confidence and drive down the LCOE, which is a key step in helping the UK to exploit its significant tidal energy resource.

REFINE: A coordinated materials programme for the sustainable reduction of spent fuel vital in a closed loop nuclear energy cycle

Professor Anthony Walton

Integrated Micro and Nano Systems

A coordinated UK research programme delivering the materials science required for sustainable spent fuel reduction in a closed loop nuclear energy cycle. This multidisciplinary programme will deliver the critical research team and the platform technologies to enable scientific advance in related molten salt application areas together with the underpinning process development and training essential to establish and deliver these objectives.

Microwave Assisted Gas Separation

Prof Xianfeng Fan

Materials and Processes

CO2 Capture

The Effect of Unicompartmental Knee Replacement Tibial Component Design on Proximal Tibial Strain and Ongoing Pain: A study of clinical and radiological outcome and finite element analysis

Dr Pankaj Pankaj

Bioengineering

Knee osteoarthritis (OA) is a common degenerative joint disease affecting 12% of the over 60s symptomatically. In approximately 20% of cases this is isolated to the medial compartment of the knee and could be managed with unicompartmental knee replacement (UKR) rather than total knee replacement (TKR). However, the survivorship of UKRs is globally inferior to that of TKRs. Unexplained pain is the second commonest cause for revision of UKR, but this is not the case with TKRs. We hypothesised that elevated proximal tibial strain under medial UKR implants may be a cause of this unexplained pain. The aims of this study are therefore to determine the effect of medial UKR tibial component design on proximal tibial strain and pain.

Development of H2 PSA (99.9% purity and 85+% recovery) Integrated with a Pre-Combustion IGCC and its Integrated Efficiency evaluation

Dr Hyungwoong Ahn

Materials and Processes

This project is aimed to develop a novel process for producing ultrapure hydrogen from synthesis gas originating from coal gasification. The coal-to-H2 process is integrated with a pre-combustion carbon capture process for de-carbonising the syngas and the integration results in improving H2 yield at the H2 Pressure Swing Adsorption (PSA).

Community-Based Waste-Water Treatment in International Development

Dr Martin Crapper

Infrastructure and Environment

A project, funded by PhD scholarships from the Islamic Development Bank and EPSRC (via the Doctoral Training Grants) is underway looking at the efficiency of meso-scale waste stabilization ponds to treat municipal waste water, with resource recovery from fish farming and selling sludge for fertilizer. The ultimate aim is to demonstrate systems that can be adpoted and run by communities, particularly in urban West Africa. The pilot project is based in Cotonou, Benin.

VELaSSCo: Visualization for Extremely Large-scale Scientific Computing

Prof. Jin Ooi

Infrastructure and Environment

The Vision of VELaSSCo is to provide new approaches for visual analysis of large-scale simulations for the Exabyte era. It does this by building on big data tools and architectures for the engineering and scientific community and by adopting new ways of in-situ processing for data analytics and hardware accelerated interactive visualization.

Using short-ranged repulsion to tune suspension viscosity and shear thickening

Dr. Jin Sun

Infrastructure and Environment

Dense suspensions of solid particles exhibit rich and fascinating flow behaviour.

Transporting, handling and storing behaviour of iron ore fines

Prof. Jin Ooi

Infrastructure and Environment

This project attempts to deal with the challenges associated with handling and storage of cohesive solids in the mining industry. An adhesive-frictional model has been recently developed for DEM simulation of cohesive particles at the University of Edinburgh. This project will exploit the new method for modelling cohesive particulates for specific problems, such as effect of fines in silo discharge and the effect of time consolidation.

Pages

Subscribe to Research Projects