Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort ascending Research Institutes Project Summary
Optimal Design of Very Large Tidal Stream Farms: for Shallow Estuarine Applications

Dr Tom Bruce

Energy Systems

This project is a collaboration between SuperGen Marine, the Exeter Centre for Water Resources (Non-SuperGen), Penn State University, Aquascientific Ltd., The Danish Hydraulics Research Institute and is mentored by Garrad Hassan partners. The primary goal is the introduction of a new hybrid optimisation approach that allows the multi-objective optimal design of the layout and power loadings of marine energy farms subject to environmental impacts. It involves a new, academically highly challenging integrated analytic/numerical/experimental, approach to optimising the performance of large tidal stream energy capture farms. The specific application focus involves tidal turbines suited to operating in shallow medium flow estuaries but the technique can be applied to all types of marine energy farms. Optimisation is subject to minimising flood risk, with further environmental impacts, such as sediment transport driven outcomes, being capable of subsequent incorporation as slow timescale effects. The work complements the PERAWAT project and has key partners in common.

X-MED: Extreme Loading of Marine Energy Devices due to Waves, Current, Flotsam and Mammal Impact

Dr Tom Bruce

Energy Systems

Marine energy should make a substantial contribution to the UK renewable energy target of 30% electricity by 2020. Tidal stream turbines are a more mature technology than wave energy devices while the potential of wave energy is considerable. There is a growing capability and confidence in the loading and performance of marine energy devices in operating conditions as designs rapidly develop. However knowledge of extreme loading is less mature and indeed there is some uncertainty about their origin.

Rural and Remote Ubiquitous Broadband Wireless Access

Dr Tharmalingam Ratnarajah

Imaging, Data and Communications

This research network would bring together key research groups that are in the vanguard of developing novel technologies and algorithms for spectrally efficient generation wireless networks in the UK and India.

Massive MIMO for Future Wireless Communication Networks

Dr Tharmalingam Ratnarajah

Imaging, Data and Communications

The spectrum crunch is a global phenomenon, where wireless networks constrained by scarce spectrum resource cannot keep pace with the explosion in mobile broadband use, particularly at a time when smartphones and tablets are becoming even more prevalent and heavily used. Every new opportunity has to be maximally exploited to cope with this spectrum deficit and meet the demands of explosive broadband usage by pushing more data through existing spectrum. Massive multiple-input multiple-output (MIMO), an advanced antenna technology only developed in 2010 offers one such opportunity.

Adsorption Materials and Processes for Carbon Capture from Gas-Fired Flower Plants - AMPGas

Professor Stefano Brandani

Materials and Processes

The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. To meet this challenge the UK Climate Change Committee (CCC) issues regular carbon budgets with recommendations on the way in which the UK needs to reduce its emissions. In its 2010 4th carbon budget, there is a clear plan for power sector decarbonation to 2030, by investing in 30-40 GW of low carbon capacity with a value of the order of £100 billion. This would drive average emissions from generation down to around 50gCO2/kWh by 2030 and includes 4 CCS demonstration plants by 2020.

Post-Combustion Carbon Capture Using MOFs: Materials and Process Development

Prof Stefano Brandani

Materials and Processes

The proposal aims to develop an international collaborative research programme under Topic 4 of the FENCO-NET call: New innovative CO2 capture technologies.

Modelling advanced adsorption processes for post-combustion capture

Prof Stefano Brandani

Materials and Processes

Carbon capture from power stations and industrial sources is an essential pillar in the effort of reducing greenhouse gas emissions in order to achieve the legally binding target set by the 2008 Climate Change Act of 80% reductions by 2050. The current state-of-the-art technologies for post-combustion capture (including retrofit options for existing plants) are based on amine scrubbers, but inherent energy requirements make this an expensive option and significant research is aimed at the development of next generation carbon capture processes that reduce the cost of capital equipment and the energy needed.

OFFGAS: OFFshore Gas Separation

Prof Stefano Brandani

Materials and Processes

Gas separations on offshore platforms are of increasing importance for the purification of natural gas and for the separation of CO2 used in enhanced oil recovery (EOR).

SuperGen UK Centre for Marine Energy Reseach

Prof Robin Wallace

Energy Systems

UKCMER is the third phase of EPSRC investment in collaborative wave and tidal energy research.  Edinburgh has led all three phases since 2003. There are 13 partner universities in the Centre working together on 15 projects.  They work together to ensure joined-up regional, disciplinary and thematic effort to help meet the challenges in accelerating deployment towards and through 2020 targets

Development of an Instrument for Rapidly Detecting Cryptosporidium in Drinking Water

Dr Robert Henderson

Integrated Micro and Nano Systems

Cryptosporidium is a waterborne microorganism which causes severe diarrhoea and can be fatal for immuno-compromised individuals, infants and young children. It is estimated that Cryptosporidium contamination of drinking water results in 250-500 million cases each year in developing countries and 60,000 in the UK alone. The Cryptosporidium organism has a thick outer wall that is resistant to many conventional water treatment methods, and outbreaks are a problem even in the developed world, negatively impacting population health and economic development - daily monitoring of the water supply is required.

Current Cryptosporidium detection methods are expensive and highly time-consuming - requiring microscopic examination by skilled scientists. Furthermore, these techniques lack species and viability information, which is essential to make well-informed public health decisions. There is, therefore, a pressing need for an instrument capable of rapidly analysing drinking water samples for the presence, species and viability of Cryptosporidium microorganisms.

Pages

Subscribe to Research Projects