Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort descending Principal Supervisor Research Institutes Project Summary
Development of an Instrument for Rapidly Detecting Cryptosporidium in Drinking Water

Dr Robert Henderson

Integrated Micro and Nano Systems

Cryptosporidium is a waterborne microorganism which causes severe diarrhoea and can be fatal for immuno-compromised individuals, infants and young children. It is estimated that Cryptosporidium contamination of drinking water results in 250-500 million cases each year in developing countries and 60,000 in the UK alone. The Cryptosporidium organism has a thick outer wall that is resistant to many conventional water treatment methods, and outbreaks are a problem even in the developed world, negatively impacting population health and economic development - daily monitoring of the water supply is required.

Current Cryptosporidium detection methods are expensive and highly time-consuming - requiring microscopic examination by skilled scientists. Furthermore, these techniques lack species and viability information, which is essential to make well-informed public health decisions. There is, therefore, a pressing need for an instrument capable of rapidly analysing drinking water samples for the presence, species and viability of Cryptosporidium microorganisms.

Direct Drive Generator for a Tidal Turbine

Professor Markus Mueller

Energy Systems

Nova Innovation and IES are collaborating to design, build and test a direct drive generator for Nova’s tidal current turbine.

Discrete Element Modeling of High-Speed Railway Embankment

Prof. Xuecheng Bian

Infrastructure and Environment

The aim is to develop a new understanding of the micromechanics of railway trackbed subjected to dynamic loads induced by high speed trains. This should lead to safer design of high-speed railway systems which require less maintenance and, therefore, are more sustainable.

ETP Knowledge Exchange in Energy: Marine Energy

Professor Ian Bryden

Energy Systems

Funding (ca. £3m) has been secured from the European Regional Development Fund (ERDF), Scottish Government, Scottish Funding Council, Scottish Enterprise and ETP Member Universities to establish a Knowledge Exchange (KE) Network. This will catalyse and accelerate KE activity between academia and SMEs, thereby increasing innovation, advancing the development of the low carbon economy in Scotland and supporting Scotland, UK and the EU to meet ambitious 2020 low carbon targets.

EURECA - Effects of utilisation in real-time on electricity capacity assessments

Dr Hannah Chalmers

Energy Systems

EURECA, the Effects of Utilisation in Real-time on Electricity Capacity Assessments, investigates the operating regimes of thermal power plants in future generation portfolios with large amounts of variable renewable energy sources (VRE). The impacts of additional VRE and energy storage capacity on the operating profiles and flexibility of thermal power plans are investigated using a unit commitment and energy storage optimisation model.

EcoWatt2050

Prof Vengatesan Venugopal

Energy Systems

The Scottish Government is committed to promoting substantial sustainable growth in its marine renewable industries. Agreements for sea bed leases are already in place for 2GW of wave and tidal developments, and projects are progressing through the licensing process. Strategic marine planning for future phases of wave, tidal and offshore wind development is now in progress. For marine renewables to significantly contribute to the low-carbon energy mix towards 2050, significant offshore development in the form of very large scale arrays will be needed.

Educational & Training System for Clean Coal Technology

Dr Maria-Chiara Ferrari

Materials and Processes

The general objective of CleanCOALtech project is: to create and develop an educational and training system for promoting, developing and implementing clean coal technologies, through knowledge and best practices shared from advanced EU country – UK to South-East European region – Romania and Greece in order to provide high performance and innovation in the vocational education and training systems and to raise stakeholders level of knowledge and skills.

Effect of particle shape, size and particle friction in granular solid flow in railway ballast

Prof. Xuecheng Bian

Infrastructure and Environment

The aim is to develop a new understanding of the micromechanics of railway trackbed subjected to dynamic loads induced by high speed trains. This should lead to safer design of high-speed railway systems which require less maintenance and, therefore, are more sustainable.

Effect of particle shape, size and particle friction in granular solid flow in railway ballast

Prof. Xuecheng Bian

Infrastructure and Environment

In the Chinese southeast coastal areas, most of the rail transit infrastructures are built on the soft soil. Infrastructures construction and operation including high speed railway or urban railway system require a good understanding of the behavior of the soft soil subject to the static and dynamic loading induced by the infrastructure.

Effective Marine Energy Design Subject to Ecological and Social Constraints

Professor Alistair Borthwick

Energy Systems

Practical marine energy resources are subject to social and ecological constraints, such as conflict with other users of the sea and environmental protection. This research aims to contribute to a greater understanding of the practical constraints on marine energy developments, the extent to which they may limit the amount of power available for extraction and, most importantly, how energy production may be optimised within the limits set by these constraints. 

Pages

Subscribe to Research Projects