Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort descending Research Institutes Project Summary
A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

Heat transfer in granular materials is a common occurrence in many industrial applications. One such application is the heating of recycled asphalt product (RAP).

Measurement and modelling of powder flow in flexible containers

Prof. Jin Ooi

Infrastructure and Environment

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

IFPRI Grindability Project: modelling, measurement and mill fingerprinting

Prof. Jin Ooi

Infrastructure and Environment

This project aims to develop a robust methodology to characterise the grindability of particulate products in milling operations which will in turn provide a step-change in mill fingerprinting and optimisation.  This involves developing a “grindability test” to measure the comminution characteristics of the particulates which, when coupled with the computational modelling work to characterise the milling function, will evaluate the milling performance measures including energy utilisation, breakage kernels for scale-up modelling such as population balance model of the mill.

T-MAPPP: Training in Multiscale Analysis of multi-Phase Particulate Processes

Prof. Jin Ooi

Infrastructure and Environment

T-MAPPP is an Initial Training Network funded by FP7 Marie Curie Actions with 10 full partners and 6 associate partners, aiming to train the next generation of researchers who can support and develop the emerging inter- and supra-disciplinary community of Multiscale Analysis (MA) of multi Phase Particulate Processes.

Multi-scale analysis of DEM data to enhance the prediction at system scale

Prof. Jin Ooi

Infrastructure and Environment

While the discrete element method (DEM) can provide particle-scale information to inform the design of particulate equipment, many industrial sectors are interested in large-scale modelling and scaling-up processes [1].

Investigation of particle breakage of dry granular materials using x-ray computed tomography and the DEM

Prof. Jin Ooi

Infrastructure and Environment

When a load is applied to an assembly of particles and particle breakage occurs, the macroscopic behaviour of the assembly is greatly affected by changes in the micro-scale caused by breakage. In this project particle breakage is studied in 3D using x-ray tomography and simulating the process with the DEM.

DEM model calibration and validation for cohesive soil-machine interactions

Prof. Jin Ooi

Infrastructure and Environment

The modelling of cohesive soils is a challenging task of great importance in many earth moving processes. In these cases, the understanding of the interaction soil-machine is vital to try to optimize the process and avoid problems. This project aims to investigate the capabilities of DEM cohesive contact models to capture with a sufficient level of accuracy the mechanical behaviours involved in soil-machine interactions.

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

For granular materials with low thermal conductivity heat transfer occurs through interstitial gases as well as through physical contacts.  Existing particle based models are ill suited to dense systems so a multi-scale approach has been used to correlate the local packing structure to the gas contribution to conductive heat transfer in dense granular systems.

Joint Experimental Investigation of two-phase flows in microscale

Professor Khellil Sefiane

Multiscale Thermofluids

The proposal aims to advance the use of microchannels based cooling technology by solving major outstanding issues.

Boiling in microchannels: integrated design of closed-loop cooling system for devices operating at high heat

Professor Khellil Sefiane

Multiscale Thermofluids

The project aims to advance the use of microchannels based cooling technology by solving major outstanding issues. Flow instabilities and maldistribution are identified as a major hurdle towards effective implementation of this technology to a variety of applications.

Pages

Subscribe to Research Projects