Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort ascending Research Institutes Project Summary
Feasibility of a wetting layer absorption carbon capture process based on chemical solvents

Professor Stefano Brandani

Materials and Processes

New ideas for carbon capture are urgently needed to combat climate change. Retro-fitting post-combustion carbon capture to existing power plants has the greatest potential to reduce CO2 emissions considering these sources make the largest contribution to CO2 emissions in the UK. Unfortunately, carbon capture methods based on existing industrial process technology for separation of CO2 from natural gas streams (i.e. amine scrubbing) would be extremely expensive if applied on the scale envisaged, as exemplified by the recent collapse of the Government's CCS project at Longannet power station. Moreover, many of the chemical absorbents used, typically amines, are corrosive and toxic and their use could generate significant amounts of hazardous waste. So, more efficient and 'greener' post-combustion CCS technologies are urgently needed if CCS is to be adopted on a global scale.

ETP Knowledge Exchange in Energy: Marine Energy

Professor Ian Bryden

Energy Systems

Funding (ca. £3m) has been secured from the European Regional Development Fund (ERDF), Scottish Government, Scottish Funding Council, Scottish Enterprise and ETP Member Universities to establish a Knowledge Exchange (KE) Network. This will catalyse and accelerate KE activity between academia and SMEs, thereby increasing innovation, advancing the development of the low carbon economy in Scotland and supporting Scotland, UK and the EU to meet ambitious 2020 low carbon targets.

MARINET: Marine Renewables Infrastructure Network for Emerging Energy Technologies

Professor Ian Bryden

Energy Systems

MARINET, the Marine Renewables Infrastructure Network, is a network of research centres and organisations that are working together to accelerate the development of marine renewable energy technologies - wave, tidal and offshore-wind. It is co-financed by the European Commission specifically to enhance integration and utilisation of European marine renewable energy research infrastructures and expertise. MARINET offers periods of free-of-charge access to world-class R&D facilities & expertise and conducts joint activities in parallel to standardise testing improve testing capabilities and enhance training & networking.

 

Multiscale characterisation of randomly oriented board strand composites from re-used prepreg scrap

Francisca Martinez Hergueta

Infrastructure and Environment

The aim of this project is to develop manufacturing upcycling technologies to re-use prepreg scrap and determine the resultant mechanical properties. This project mitigates the environmental impact of conventional composite manufacturing processes reducing air emissions and energy consumption. It also contributes towards a sustainable economy reducing the waste disposal fees paid by commercial companies and recovering commercial value from the composite scrap. 

Reduce energy penalty in CO2 capture processes and the emission of SOx and NOx from coal combustion

Dr Xiangfeng Fan

Materials and Processes

The research focuses on develop a microwave swing technique to selectively heat solid at molecular level for adsorbent regeneration, and then compare the results with temperature swing. The project is supported by EPSRC.

 

Using short-ranged repulsion to tune suspension viscosity and shear thickening

Dr. Jin Sun

Infrastructure and Environment

Dense suspensions of solid particles exhibit rich and fascinating flow behaviour.

Models for manufacturing of particulate products

Professor Jin Ooi

Infrastructure and Environment

This project aims to create a generally applicable framework for transferring academic innovations in the modelling of particulate materials into industrial practice in the UK. The process of twin-screw granulation has been selected as an exemplar industrial process which is simulated across multiple scales using the coupled methods of population balance modelling and the discrete element method.

ADEL: Advanced Dynamic spectrum 5G mobile networks Employing Licensed shared access

Prof Tharmalingam Ratnarajah

Digital Communications

Based on the negotiation meeting held in Brussels on 24th July 2013 under the 'Seventh Framework Programme for Research of the European Commission',  ADEL's aim is to develop future heterogeneous wireless networks of  higher capacity and energy efficiency thus setting the road-map for the adoption of spectrum flexible broadband wireless systems by 2020.

 

FLITES: Fibre-Laser Imaging of Gas Turbine Exhaust Species

Professor Hugh McCann

Digital Communications

The FLITES consortium aims to enhance turbine-related R&D capacity in both academia and industry by opening up access to exhaust plume chemistry with penetrating spatio-temporal resolution. This will underpin a new phase of low-net-carbon development that is already underway in aviation, based on bio-derived fuels, entailing extensive R&D in turbine engineering and combustion, and fuel product formulation.

Measurement and modelling of powder flow in flexible containers

Prof. Jin Ooi

Infrastructure and Environment

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

Pages

Subscribe to Research Projects