The research in this project will focus on modelling full resource-to-wire dynamic models of tidal arrays in order to investigate and optimise their operation. The expected impact of this study is providing industry with an understanding and guidelines of the applicability of the different electrical layouts to specific locations and size of the arrays.
Compare different generator technologies and control theories
Validate models using real measured data
Perform harmonic analysis and accurate loss modelling based on temperature/frequency variations
Suggest cost-effective solutions for device developers
This project aims to innovate and improved solutions for the management of power flows in a hybrid electrical power system, to provide a secure, reliable, and high quality supply to varying load demands. The expected research outcome is the design of a robust and fault-tolerant management system, featuring higher efficiency and improved techno-economic performance.
Optimal system sizing through linear programming
Testing and analysis of an off-the-shelf hybrid system
Novel control system design for optimised performance
Wave energy has a great potential as renewable source of electricity. Studies have demonstrated that significant percentage of world electricity could be produced by Wave Energy Converters (WECs). However electricity generation from waves still lacks of spreading because the combination of harsh environment and form of energy makes the technical development of cost effective WECs particularly difficult.