Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort descending Research Institutes Project Summary
TROPOS: Modular Multi-use Deep Water Offshore Platform Harnessing and Servicing Mediterranean, Subtropical and Tropical Marine and Maritime Resources

Professor David Ingram

Energy Systems

TROPOS is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the "Ocean of Tomorrow" call OCEAN 2011.1 – Multi-use offshore platforms. The TROPOS Project aims at developing a floating modular multi-use platform system for use in deep waters, with an initial geographic focus on the Mediterranean, Tropical and Sub-Tropical regions, but designed to be flexible enough so as to not be limited in geographic scope.

TEDDINET: Network of (Build) TEDDI projects

Professor Gareth Harrison

Energy Systems

Established in September 2013 and funded for four years, TEDDINET is a research network examining the interactions of people with digital technologies and the potential for smart metering to transform energy demand in the home and at work. TEDDINET’s primary purpose is to create added value and enhance the impact of 22 individual research projects funded under the ‘Transforming Energy Demand through Digital Innovation’ (TEDDI) and ‘Transforming Energy Demand in Buildings through Digital Innovation’ (BuildTEDDI) programmes. Sponsored by the UK Engineering and Physical Sciences Research Council (EPSRC), these 22 projects encompass 26 (UK) universities, 75 partners from industry and the housing sector, and over 200 researchers from engineering, informatics, design and social sciences.

ARIES: Adaptation and Resilience in Energy Systems

Professor Gareth Harrison

Energy Systems

The energy supply sector is undergoing massive technological changes to reduce its greenhouse gas emissions. At the same time, the climate is progressively changing creating new challenges for energy generation, networks and demand. The Adaptation and Resilience in Energy Systems (ARIES) project aims to understand how climate change will affect the UK gas and electricity systems and in particular its 'resilience'.

Land of the MUSCos

Professor Gareth Harrison

Energy Systems

Present infrastructure service delivery, characterized by isolated supply streams for an uncontrolled demand, is uneconomical, inefficient, and ultimately unsustainable. What kinds of alternatives can be identified and implemented? In this project, we research and promote the establishment of Multi-Utility Service Companies, or MUSCos.

GREENNET An early stage training network in enabling technologies for GREEN radio

Professor Harald Haas

Digital Communications

Greenet is an Initial Training Network (ITN) Marie Curie project that is focused on the analysis, design, and optimization of energy efficient wireless communication systems and networks.

Tackling the looming spectrum crisis in Wireless Communication

Professor Harald Haas

Digital Communications

The proposed work in this EPSRC Fellowship is aimed at providing radical new solutions to this fundamental and far reaching challenge. A key pillar of the proposed work is the extension of the RF spectrum to include the infrared as well as the visible light spectra. The recent advancements in light emitting diode (LED) device technology now seems to let the vision of using light for high speed wireless communications become a reality.

Optical Free-Space Backhaul and Power for Energy Autonomous Small Cells

Professor Harald Haas

Digital Communications

The central aim of the project is the design of a novel simple structure for a communication base station. Its operation will be based on off-the-shelf optical components such as white LEDs, laser-diodes and photo-diodes.

Robust Repeatable Respiratory Monitoring in EIT

Professor Hugh McCann

Digital Communications

The project aims at developing a new electrical impedance tomography (EIT) device for medical use. This device, called ReMEIT, should enable 3D absolute conductivity image reconstruction. To achieve this goal the project intends to capture the exact positions of the measuring electrodes and the exact thoracic shape using an optical shape capture device. These are absolutely novel approaches in EIT imaging that, if successful, could represent an immense progress in EIT research and a big step towards reliable clinical use of this technology. The project partners not only plan to develop the device but they also propose a strategy for its validation under invivo conditions. At first, healthy volunteers with no history of lung disease will be examined by ReMEIT and, later, the EIT device will be applied in critically ill patients suffering from various pulmonary diseases. In the former case, reference data will be obtained by magnetic resonance imaging (MRI), in the latter one, routine chest X-ray, computed tomography (CT)and MRI data will be utilised.

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

For granular materials with low thermal conductivity heat transfer occurs through interstitial gases as well as through physical contacts.  Existing particle based models are ill suited to dense systems so a multi-scale approach has been used to correlate the local packing structure to the gas contribution to conductive heat transfer in dense granular systems.

Measurement and modelling of powder flow in flexible containers

Prof. Jin Ooi

Infrastructure and Environment

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

Pages

Subscribe to Research Projects