Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort ascending Research Institutes Project Summary
Health and Safety in Voluntary Sector Construction

Dr Martin Crapper

Infrastructure and Environment

This research, conducted using sociological methods, investigates how these volunteer workers of railway sector construct safety in their volunteering environment.

LEANWIND: Logistic Efficiencies and Naval Architecture for Wind Installations with Novel Developments

Dr Lucy Cradden

Energy Systems

LEANWIND is a 4-year project that started in December 2013. It is led by a 31-partner consortium and has been awarded €10 million by the European Commission, but its total value amounts to €15 million.

The primary LEANWIND objective is to provide cost reductions across the offshore wind farm lifecycle and supply chain through the application of lean principles and the development of state of the art technologies and tools.

Efficient DEM simulation of large systems of non-spherical particles

Dr. Kevin Hanley

Infrastructure and Environment

To enlarge the scale of discrete element modelled particulate system from spherical to nonspherical; to increase the computational efficiency of simulating the nonspherical system; to provide more insights of particulate solid mechanics in engineering applications.

Electro-Mechanical Modelling of Tidal Turbines

Dr Jonathan Shek

Energy Systems

The research in this project will focus on modelling full resource-to-wire dynamic models of tidal arrays in order to investigate and optimise their operation.  The expected impact of this study is providing industry with an understanding and guidelines of the applicability of the different electrical layouts to specific locations and size of the arrays.

Compare different generator technologies and control theories Validate models using real measured data Perform harmonic analysis and accurate loss modelling based on temperature/frequency variations Suggest cost-effective solutions for device developers
CAUSE - Control of wave energy Arrays Using Storage of Energy

Dr Jonathan Shek

Energy Systems

There are 3 main objectives in this project:

Answer the research question: Can energy storage radically improve off-grid and on-grid control in wave energy arrays? How can it be done? Develop an electrical array model for wave energy, with energy storage and co-ordinated control Strengthen the partnership between the UK and Chinese Institutions for future research collaboration

 

TorqTidal: Mitigating Torque Pulsations in Tidal Current Turbines

Dr Jonathan Shek

Energy Systems

TorqTidal seeks to provide control strategies for tidal current turbines that will reduce the risk of failure and increase the lifetime of device components without increasing capital costs. This will act to increase investor confidence and drive down the LCOE, which is a key step in helping the UK to exploit its significant tidal energy resource.

WindSurf - A self-starting, active-pitch, vertical-axis wind turbine

Dr Jonathan Shek

Energy Systems

WindSurf aims to develop a core enabling technology - active blade pitching for a vertical axis wind turbine. This will allow wind turbines to operate in challenging wind conditions, to operate quietly and for new, lower maintenance turbine designs. WindSurf will open up new sites for wind energy: sites previously rejected because wind speeds were too low, variable or subject to swirling, or where noise nuisance would have been a concern. WindSurf will tackle all three parts of the energy trilemma: reducing emissions, increasing security of supply, and reducing cost.

Off-grid Hybrid Energy Systems

Dr Jonathan Shek

Energy Systems

This project aims to innovate and improved solutions for the management of power flows in a hybrid electrical power system, to provide a secure, reliable, and high quality supply to varying load demands. The expected research outcome is the design of a robust and fault-tolerant management system, featuring higher efficiency and improved techno-economic performance.

Optimal system sizing through linear programming Testing and analysis of an off-the-shelf hybrid system Novel control system design for optimised performance Lab testing and field testing
Flow and sintering of non-spherical particles in additive manufacturing

Dr. Jin Sun

Infrastructure and Environment

The Edinburgh part of the project focues on the multi-physics modelling of particle dynamics and sintering behaviour in selective laser sintering processes. This work is an integrated part of an EPSRC funded project to develop fundamental understanding of particle behavour in additive manufacturing, collaborating with the University of Exeter. This project proposes to investigate the way polymeric powders of different shapes and sizes flow, interact and sinter in the laser sintering process, through modelling and experimental validation. Laser sintering is part of the additive manufacturing technology, known for its benefits in industries where custom made products, lightweight and complex designs are required.

 

Modelling of dense suspensions rheology

Dr. Jin Sun

Infrastructure and Environment

We examine the rheology of granular dense suspensions using computer simulations with discreste particles and develop constitutive models for flow of such suspensions.

Pages

Subscribe to Research Projects