Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort ascending Principal Supervisor Research Institutes Project Summary
GECOMPL: Generalised Continuum Models and Plasticity

Dr Stefanos Papanicolopulos

Infrastructure and Environment

The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

Flow and sintering of non-spherical particles in additive manufacturing

Dr. Jin Sun

Infrastructure and Environment

The Edinburgh part of the project focues on the multi-physics modelling of particle dynamics and sintering behaviour in selective laser sintering processes. This work is an integrated part of an EPSRC funded project to develop fundamental understanding of particle behavour in additive manufacturing, collaborating with the University of Exeter. This project proposes to investigate the way polymeric powders of different shapes and sizes flow, interact and sinter in the laser sintering process, through modelling and experimental validation. Laser sintering is part of the additive manufacturing technology, known for its benefits in industries where custom made products, lightweight and complex designs are required.

 

FireComp: Modelling the thermo-mechanical behaviour of high pressure vessel in composite materials when exposed to fire conditions

Dr Stephen Welch

Infrastructure and Environment

Hydrogen is expected to be highly valuable energy carrier for the 21st century as it should participate in answering main societal and economical concerns. To exploit its benefits at large scale, further research and technological developments are required. In particular, the storage of hydrogen must be secured. Even if burst in service of pressure vessels in composite material is very unlikely, when exposed to a fire, they present safety challenges imposing to correctly size their means of protection.

Fire-fighting underventilated fires

Dr Ricky Carvel

Infrastructure and Environment

Working with the fire brigades, and using a small-scale experimental apparatus to define appropriate fire-fighting responses to underventilated fires in sealed or partially sealed compartments. 

Fire Safety of Modern Timber Infrastructure

Dr Rory Hadden

Infrastructure and Environment

Exposed structural timber elements within a compartment creates an additional fuel load which must be considered in design. This research focuses on quantifying this additional fuel load, and understanding conditions where after burnout of the compartment contents, the additional exposed timber may stop burning (auto-extinguish). 

Finite element implementation and detailed comparison of generalised plasticity models

Dr. Stefanos Papanicolopulos

Infrastructure and Environment

The lack of an internal length scale parameter in classical continua leads to unrealistic numerical modelling of some phenomena related to the microstructure of the material such as size effect and strain localisation.

Feasibility of a wetting layer absorption carbon capture process based on chemical solvents

Professor Stefano Brandani

Materials and Processes

New ideas for carbon capture are urgently needed to combat climate change. Retro-fitting post-combustion carbon capture to existing power plants has the greatest potential to reduce CO2 emissions considering these sources make the largest contribution to CO2 emissions in the UK. Unfortunately, carbon capture methods based on existing industrial process technology for separation of CO2 from natural gas streams (i.e. amine scrubbing) would be extremely expensive if applied on the scale envisaged, as exemplified by the recent collapse of the Government's CCS project at Longannet power station. Moreover, many of the chemical absorbents used, typically amines, are corrosive and toxic and their use could generate significant amounts of hazardous waste. So, more efficient and 'greener' post-combustion CCS technologies are urgently needed if CCS is to be adopted on a global scale.

FLOWBEC - FLOW and Benthic Ecology 4D

Dr Angus Creech

Energy Systems

The FLOWBEC project aims to improve the understanding of how the physical behaviour of the water such as currents, waves and turbulence at tide and wave energy sites influences the behaviour of marine wildlife, and how tide and wave energy devices might alter the behaviour of such wildlife.

FASTBLADE, Structural Composites Research Facility

Conchúr Ó Brádaigh

Energy Systems, Materials and Processes

FASTBLADE is commencing construction - see our facility site here.

The Structural Composites Research Facility (SCRF) is funded by a strategic equipment grant (EP/P029922/1). The grant started on the 1st of June 2017 and is due to complete on the 30sh of November 2020. The SCRF is to be setup as a Small Research Facility (SRF) and has been given the name FASTBLADE.

FASTBLADE will offer a suite of experimental and testing services to meet every client’s needs. The team can offer bespoke solutions to match every user’s needs and are supported by the world renown expertise and knowledge within the School of Engineering, University of Edinburgh.

Enhanced oil/gas recovery and CO2 storage

Dr Xianfeng Fan

Materials and Processes

Enhanced oil/gas recovery and CO2 storage are a displacement process at pore scale, in which oil and gas are displaced by water or CO2 in reservoir at pore scale, or water is displaced by CO2 in aquifers at pore scale. This displacement is controlled by pore structure, pore wettability, pore surface chemistry, fluid viscosity and interfacial interaction between pore fluids and pore surfaces. The displacement controls the pore connectivity, therefore oil/gas recovery and CO2 storage capacity. We investigate the displacement and the effect of various factors on the displacement at pore scale and core scale.

Pages

Subscribe to Research Projects