granular-mechanics

The aim is to develop a new understanding of the micromechanics of railway trackbed subjected to dynamic loads induced by high speed trains. This should lead to safer design of high-speed railway systems which require less maintenance and, therefore, are more sustainable.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
DEM simulation of experimental trackbed at Zhejiang University

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
A typical flexible container for storage and transport of powders, called a “powder buggy”

For granular materials with low thermal conductivity heat transfer occurs through interstitial gases as well as through physical contacts.  Existing particle based models are ill suited to dense systems so a multi-scale approach has been used to correlate the local packing structure to the gas contribution to conductive heat transfer in dense granular systems.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
Conductive heat transfer through stagnant gas and solid in a random packing.

In the Chinese southeast coastal areas, most of the rail transit infrastructures are built on the soft soil. Infrastructures construction and operation including high speed railway or urban railway system require a good understanding of the behavior of the soft soil subject to the static and dynamic loading induced by the infrastructure.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
The shear vane test model built with the DEM software EDEM. [Note: the grey colour represents the vane and consists of two perpendicular blades and the rigid solid particles were generated in fixed boundary];

Extreme climatic events in the 21st century threaten the resilience of geotechnical engineering structures. Low-permeability barriers are at a particularly high risk of inundation under flooding or cracking during droughts, compromising the barriers and permitting contamination of the surrounding ground.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
Photo of a water repellent sand.

The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (https://www.t-mappp.eu).

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
Influence of including rolling resistance on flow profiles of spherical particles.

Mud, slurry, coffee, paints, cements, batteries and many other everyday materials have particles suspended in a liquid. We need to understand the flow behaviour to handle, and process such materials for traditional and innovative applications. Our research seeks to understand the common features of the flow behaviour of different materials using simple particle based simulations. In particular, we focus on dense suspensions where the particles occupy more than 50 % by volume of the solution.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
DEM simulation of shear flow of particle suspension

To enlarge the scale of discrete element modelled particulate system from spherical to nonspherical; to increase the computational efficiency of simulating the nonspherical system; to provide more insights of particulate solid mechanics in engineering applications.

Research Themes: 

  • Granular Mechanics and Industrial Infrastructure
SQ MS figure

Pages

Subscribe to RSS - granular-mechanics