IIE Research Projects

Research Projects at the Institute for Infrastructure and Environment (IIE). You can search keywords within Project Titles.

We also have a number of Infrastructure and Environment PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Titlesort descending Principal Supervisor Project Summary
Fire Safety of Modern Timber Infrastructure

Dr Rory Hadden

Exposed structural timber elements within a compartment creates an additional fuel load which must be considered in design. This research focuses on quantifying this additional fuel load, and understanding conditions where after burnout of the compartment contents, the additional exposed timber may stop burning (auto-extinguish). 

Fire-fighting underventilated fires

Dr Ricky Carvel

Working with the fire brigades, and using a small-scale experimental apparatus to define appropriate fire-fighting responses to underventilated fires in sealed or partially sealed compartments. 

FireComp: Modelling the thermo-mechanical behaviour of high pressure vessel in composite materials when exposed to fire conditions

Dr Stephen Welch

Hydrogen is expected to be highly valuable energy carrier for the 21st century as it should participate in answering main societal and economical concerns. To exploit its benefits at large scale, further research and technological developments are required. In particular, the storage of hydrogen must be secured. Even if burst in service of pressure vessels in composite material is very unlikely, when exposed to a fire, they present safety challenges imposing to correctly size their means of protection.

Flow and sintering of non-spherical particles in additive manufacturing

Dr. Jin Sun

The Edinburgh part of the project focues on the multi-physics modelling of particle dynamics and sintering behaviour in selective laser sintering processes. This work is an integrated part of an EPSRC funded project to develop fundamental understanding of particle behavour in additive manufacturing, collaborating with the University of Exeter. This project proposes to investigate the way polymeric powders of different shapes and sizes flow, interact and sinter in the laser sintering process, through modelling and experimental validation. Laser sintering is part of the additive manufacturing technology, known for its benefits in industries where custom made products, lightweight and complex designs are required.

 

GECOMPL: Generalised Continuum Models and Plasticity

Dr Stefanos Papanicolopulos

The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

Geobag Revetments for river bank reinforcement in Bangladesh

Dr Martin Crapper

This project aims at the production of guidelines for the safe design of revetments, which are often constructed manually by local farmers, with little engineering input.

Ground Penetrating Radar (GPR) Modelling

Dr Antonis Giannopoulos

Welcome to GPR Max, a ground penetrating radar simulation tool.

Health and Safety in Voluntary Sector Construction

Dr Martin Crapper

This research, conducted using sociological methods, investigates how these volunteer workers of railway sector construct safety in their volunteering environment.

High Performance Computing Support for United Kingdom Consortium on Turbulent Reacting Flows (UKCTRF)

Dr Stephen Welch

The proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines.

IFPRI Grindability Project: modelling, measurement and mill fingerprinting

Prof. Jin Ooi

This project aims to develop a robust methodology to characterise the grindability of particulate products in milling operations which will in turn provide a step-change in mill fingerprinting and optimisation.  This involves developing a “grindability test” to measure the comminution characteristics of the particulates which, when coupled with the computational modelling work to characterise the milling function, will evaluate the milling performance measures including energy utilisation, breakage kernels for scale-up modelling such as population balance model of the mill.

Pages

Subscribe to IIE Research Projects