Dr Prashant Valluri

Senior Lecturer & Acting Dep Head of Grad School

Email: 

Telephone: 

+44(0)131 6505691

Location: 

2.2010 James Clark Maxwell Building

Engineering Discipline: 

  • Chemical Engineering

Research Institute: 

  • Multiscale Thermofluids

Research Theme: 

  • Multiphase Flows and Transport Phenomena
  • Multiphase flows, interfaces and phase change from nano- to macro-scales
Dr Prashant Valluri
Dr Prashant Valluri

Biography: 

My work centres around the development of understanding and mathematical models for complex multiphase flow patterns to tackle various industrial problems like cleaning, oil-gas transport, slurry transport, distillation, absorption, thermal management of microdevices and biological problems such as cerebral temperature regulation and lung function.

Academic Qualifications: 

PhD, Department of Chemical Engineering, Imperial College London, 2004

  • Thesis Title: Multiphase Fluid Dynamics in Structured Packing

 

Professional Qualifications and Memberships: 

Teaching: 

  • Fluid Mechanics 4 (Chemical) CHEE10004
  • Chemical Engineering Industrial Project 5 CHEE11014
  • Chemical Engineering Research Project 5 CHEE11017
  • Chemical Engineering Study Project 4 CHEE10009
  • Chemical Engineering Design Projects 4 CHEE10002
  • Chemical Engineering 1 Laboratory CHEE08001
  • Chemical Engineering in Practise 3 CHEE09006

Research Interests: 

Multiphase (and single-phase) fluid dynamics and transport phenomena

Hydrodynamic stability

Instabilities are at the heart of all multiphase flows - they are responsible for regime transitions and all other extraordinarily complex and seemingly chaotic flow patterns that multiphase flows demonstrate. In particular, instabilities observed on fluid-fluid interfaces (liquid-vapour) when coupled to complexities such as phase-change (evaporation/ condensation/ boiling), reactions etc.  

Development of Ultra-High Resolution Multiphase Flow Solvers

My group also develops bespoke multiphase 3D flow solvers - based on the target application. For example:

  1. TPLS Flow Solver (V2 Opensourced in May 2015) - For two layer (fluid/fluid) flows - for oil/gas or oil/water flows, gas/liquid flows in absorption or distillation units, or for phase change flows for thermal management of microdevices.
  2. GISS Flow Solver (soon to be opensourced) - DNS solver for immersed solids in flows - for slurry flows such as hydrate agglomerates or large complex-shaped solids immersed in flowing fluids.

These solvers are optimised for supercomputing clusters such as ARCHER.

Multiphase Flows

You can watch this video on Media Hopper or on YouTube.

Specialities: 

  • Transport phenomena (e.g. phase change, reaction-diffusion transport)
  • Multiphase (& single phase) fluid dynamics: Development of numerical (CFD/DNS) and analytical (stability theory) tools (e.g. oil-gas-solid pipeline flows, industrial cleaning and fouling)
  • Biological fluid dynamics (e.g. brain temperature mapping, arterial flows, enzymatic kinetics)

Further Information: 

  • Deputy Head of Graduate School (2016 - present)
  • Acting Deputy Head of Graduate School (2015 - 2016)