Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisor Research Institutes Project Summary
Ligniflex: A synthetic biology platform to optimise the process and products of enzymatic lignin disruption

Professor Alistair Elfick


Our goal is to test the feasibility of producing low molecular weight aromatic chemical feedstocks from the lignin that is currently a waste product from wood processing and paper manufacturing, so that it may be used to manufacture useful products. We propose to develop a "front-end" to optimise the conversion of lignin into its constitutive aromatic chemical building blocks. This technology may be bolted to any "back-end" in a biorefinery to produce bioplastics, biosurfactants, biomaterials and so on. By exploring and optimising a technology which allows for the rapid tuning of bacteria or fungi for exploiting the conversion of lignin, we stand to limit waste by being able to optimise the degradation products being used as chemical feedstocks and diversify the range of end-bioproducts possible.

Cellulect: A Synthetic Biology Platform fot eh Optimization of Enzymatic Biomass Processing

Professor Alistair Elfick


We propose to develop and implement a genetic platform for optimizing blends of enzymes for biomass processing applications, using computational modeling, combinatorial gene assembly, expression control and high-throughput screening of gene cassettes from a library of genes in modular format. In addition to providing optimal enzyme blends for any given application, analysis of the results will allow us to develop heuristics which will facilitate rational design of biomass processing systems in the future, and will lead to a deeper understanding of biomass degradation processes.

Feasibility of a wetting layer absorption carbon capture process based on chemical solvents

Professor Stefano Brandani

Materials and Processes

New ideas for carbon capture are urgently needed to combat climate change. Retro-fitting post-combustion carbon capture to existing power plants has the greatest potential to reduce CO2 emissions considering these sources make the largest contribution to CO2 emissions in the UK. Unfortunately, carbon capture methods based on existing industrial process technology for separation of CO2 from natural gas streams (i.e. amine scrubbing) would be extremely expensive if applied on the scale envisaged, as exemplified by the recent collapse of the Government's CCS project at Longannet power station. Moreover, many of the chemical absorbents used, typically amines, are corrosive and toxic and their use could generate significant amounts of hazardous waste. So, more efficient and 'greener' post-combustion CCS technologies are urgently needed if CCS is to be adopted on a global scale.

Stereoregular Polyphosphonates and Poly(phosphate ester)s

Dr Michael Shaver (School of Chemistry)

Integrated Micro and Nano Systems

An industry-funded collaboration between Samsung's Global Research Outreach (GRO) Program and the Schools of Chemistry and Engineering at the University of Edinburgh.

Models for manufacturing of particulate products

Professor Jin Ooi

Infrastructure and Environment

This project aims to create a generally applicable framework for transferring academic innovations in the modelling of particulate materials into industrial practice in the UK. The process of twin-screw granulation has been selected as an exemplar industrial process which is simulated across multiple scales using the coupled methods of population balance modelling and the discrete element method.

IMPACT: Implantable Microsystems for Personalised Anti-Cancer Therapy

Professor Alan Murray


IMPACT is a 5-year, £5.2M research project, funded by an EPSRC Programme Grant, to develop new approaches to cancer treatment, using implanted, smart sensors on silicon, fabricated in the University's Scottish Microelectronics Centre. IMPACT will use miniaturised, wireless sensor chips the size of a grass seed to monitor the minute-to-minute status of an individual tumour. This will allow RT to be targeted in space and time to damage cancer cells as much as possible. The team consists of engineers, chemists, veterinary clinicians, social scientists and human cancer specialists, led by Prof Alan Murray from the University's School of Engineering.


UDRC: University Defence Research Collaboration in Signal Processing

Prof Mike Davies

Imaging, Data and Communications

Signal Processing is fundamental to the capability of all modern sensor weapon systems and the Defence Technology Strategy identified the development and application of signal processing techniques as high priority technical challenges within the MOD research agenda.

The UDRC is a leading partnership between industry, defence and is academia led and focuses on sensor signal processing for defence.

TASCC: Pervasive low-TeraHz and Video Sensing for Car Autonomy and Driver Assistance (PATH CAD)

Prof Bernard Mulgrew

Imaging, Data and Communications

This project combines novel low-THz (LTHz) sensor development with advanced video analysis, fusion and cross learning. Using the two streams integrated within the sensing, information and control systems of a modern automobile, we aim to map terrain and identify hazards such as potholes and surface texture changes in all weathers, and to detect and classify other road users (pedestrians, car, cyclists etc.).

In-situ Chemical Measurement and Imaging Diagnostics for Energy Process Engineering

Prof Hugh McCann and Prof Walter Johnstone

Imaging, Data and Communications

The primary focus of the programme proposed here is to build across two universities (Strathclyde and Edinburgh) a world leading UK research, development and applications capability in the field of in-situ chemical and particulate measurement and imaging diagnostics for energy process engineering. Independently, the two university groups already have globally eminent capabilities in laser-based chemical and particulate measurement and imaging technologies. They have recently been working in partnership on a highly complex engineering project (EPSRC FLITES) to realise a chemical species measurement and diagnostic imaging system (7m diameter) that can be used on the exhaust plume of the largest gas turbine (aero) engines for engine health monitoring and fuels evaluation. Success depended on the skills acquired by the team and their highly collaborative partnership working. A key objective is to keep this team together and to enhance their capability, thus underpinning the research and development of industrial products, technology and applications. The proposed grant would also accelerate the exploitation of a strategic opportunity in the field that arises from the above work and from recent recruitment of academic staff to augment their activities. The proposed programme will result in a suite of new (probably hybrid) validated, diagnostic techniques for high-temperature energy processes (e.g. fuel cells, gas turbine engines, ammonia-burning engines, flame systems, etc.). 

Signal Processing in the Information Age

Prof Michael E Davies

Imaging, Data and Communications

The aim of the UDRC is to develop unprecedented research in signal processing with application to the defence industry and share knowledge, promote communications, guidance and training. The formation of consortia will bring together researchers from across the different aspects of signal processing to address the research challenges of operating in a networked battlespace. This will form part of a wider collaborative centre of excellence for signal processing that embraces academia, Research and Technology Organisations, defence manufacturing industries and the Defence Technology Centres. This collaboration will support a cutting edge signal and data processing capability in the UK, and lead to potentially greater research impact.


Subscribe to Research Projects