Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort descending Research Institutes Project Summary
Clearwater: Demonstration of First Ocean Energy Arrays

Mr Henry Jeffrey

Energy Systems

This project will design, build, install and operate an open ocean 4.5MW tidal energy farm in the Inner Sound in the Pentland Firth, off the Northern coast of Scotland. The project ("Clearwater") will demonstrate the technical and economic feasibility of a multi-turbine tidal energy array, an essential step to catalyse development of commercial projects in the EU ocean energy industry. Project Clearwater provides a credible, robustly implemented transition from high cost single turbine demonstration deployments of marine turbines to economically viable multi-hundred turbine arrays in oceans and managed water assets across Europe and the wider global market.

IMPACT: Implantable Microsystems for Personalised Anti-Cancer Therapy

Professor Alan Murray

Bioengineering

IMPACT is a 5-year, £5.2M research project, funded by an EPSRC Programme Grant, to develop new approaches to cancer treatment, using implanted, smart sensors on silicon, fabricated in the University's Scottish Microelectronics Centre. IMPACT will use miniaturised, wireless sensor chips the size of a grass seed to monitor the minute-to-minute status of an individual tumour. This will allow RT to be targeted in space and time to damage cancer cells as much as possible. The team consists of engineers, chemists, veterinary clinicians, social scientists and human cancer specialists, led by Prof Alan Murray from the University's School of Engineering.

 

TRANSFER: Evaluation and Optimization of Fuel Treatment Effectiveness with an Integrated Experimental/Modeling Approach #2

Prof Albert Simeoni

Infrastructure and Environment

Over the past ten years, ca. US$ 5.6 billion has been spent on hazardous fuel reduction to treat an average of ca. 2.5 million acres per year across the United States. These expenditures represent one of the primary strategies for the mitigation of catastrophic wildland fire events. At the local scale, the placement and implementation of fuel reduction treatments is complex, involving trade-offs between environmental impacts, threatened and endangered species mitigation, funding, smoke management, parcel ownership, litigation, and weather conditions. Because of the cost and complexity involved, there is a need for implementing treatments in such a way that hazard mitigation, or other management objectives, are optimized.

Effective Marine Energy Design Subject to Ecological and Social Constraints

Professor Alistair Borthwick

Energy Systems

Practical marine energy resources are subject to social and ecological constraints, such as conflict with other users of the sea and environmental protection. This research aims to contribute to a greater understanding of the practical constraints on marine energy developments, the extent to which they may limit the amount of power available for extraction and, most importantly, how energy production may be optimised within the limits set by these constraints. 

An infrastructure for platform technology in synthetic biology

Prof Alistair Elfick

Bioengineering

The aim of the project is to develop integrated platform technology and an infrastructure for synthetic biology. Five British universities (Imperial College, Cambridge, Edinburgh, LSE/Kings and Newcastle), who are amongst the international leaders in synthetic biology, have formed a Consortium to address the issue. These universities already have very significant research programmes in synthetic biology (e.g. Imperial College has the EPSRC National Centre for Synthetic Biology and Innovation - CSynBI).

Ligniflex: A synthetic biology platform to optimise the process and products of enzymatic lignin disruption

Professor Alistair Elfick

Bioengineering

Our goal is to test the feasibility of producing low molecular weight aromatic chemical feedstocks from the lignin that is currently a waste product from wood processing and paper manufacturing, so that it may be used to manufacture useful products. We propose to develop a "front-end" to optimise the conversion of lignin into its constitutive aromatic chemical building blocks. This technology may be bolted to any "back-end" in a biorefinery to produce bioplastics, biosurfactants, biomaterials and so on. By exploring and optimising a technology which allows for the rapid tuning of bacteria or fungi for exploiting the conversion of lignin, we stand to limit waste by being able to optimise the degradation products being used as chemical feedstocks and diversify the range of end-bioproducts possible.

Cellulect: A Synthetic Biology Platform fot eh Optimization of Enzymatic Biomass Processing

Professor Alistair Elfick

Bioengineering

We propose to develop and implement a genetic platform for optimizing blends of enzymes for biomass processing applications, using computational modeling, combinatorial gene assembly, expression control and high-throughput screening of gene cassettes from a library of genes in modular format. In addition to providing optimal enzyme blends for any given application, analysis of the results will allow us to develop heuristics which will facilitate rational design of biomass processing systems in the future, and will lead to a deeper understanding of biomass degradation processes.

The Sc2.0 UK Genome Engineering Resource (SUGER)

Professor Alistair Elfick

Bioengineering

Building the world's first synthetic eukaryotic genome together.

SACSESS: Safety of Actinide Separation Processes

Prof Anthony Walton

Integrated Micro and Nano Systems

SACSESS kicked off on 1 March 2013. This European collaborative project involves 26 partners from European universities, nuclear research bodies, TSOs and industrial stakeholders and aims to generate fundamental safety improvements on the future design of an Advanced Processing Unit.

REFINE: A coordinated materials programme for the sustainable reduction of spent fuel vital in a closed loop nuclear energy cycle

Professor Anthony Walton

Integrated Micro and Nano Systems

A coordinated UK research programme delivering the materials science required for sustainable spent fuel reduction in a closed loop nuclear energy cycle. This multidisciplinary programme will deliver the critical research team and the platform technologies to enable scientific advance in related molten salt application areas together with the underpinning process development and training essential to establish and deliver these objectives.

Pages

Subscribe to Research Projects