My research focuses on the removal of selected micro contaminants and potential Endocrine Disrupting Compounds (EDCs) from water and wastewater by means of the photocatalytic process as well as on the investigation of method’s sustainability.
This Ph.D. aims to investigate the potential of filamentous green macroalgae (Chlorophyta) to bioremediate wastewaters. This will examine the ability of the macroalgae to sequester excess nutrients in effluent streams, as well as its biosorption and bioaccumulation capacity for heavy metals; with an end goal of using the biomass as a feedstock for bioenergy or for metal reclamation.
This project will use novel catalytic nanoparticles for water treatment with emphasis given on the removal of emerging micro-pollutants, such as Bisphenol A (BPA).
This project aims at identifying the mechanisms involved during the removal of different types of chlorophenols using several biochars during water treatment. Chlorophenols and biochars with different physico-chemical properties will be tested as well as different environmental characteristics.
Miss Underwood's doctoral research seeks to develop and test new nano-composite materials for the use in water treatment. She wishes to improve upon the existing nano zero-valent iron technologies as well as to explore how specific nanotechnologies can be applied in an economic and incentivized fashion for successful technological adoption.
The aim of this study is to investigate the various factors affecting membrane fouling and its reversibility in forward osmosis. Understanding these could advance the optimisation of forward osmosis, which will encourage the implementation of this process prior to reverse osmosis desalination.
A project, funded by PhD scholarships from the Islamic Development Bank and EPSRC (via the Doctoral Training Grants) is underway looking at the efficiency of meso-scale waste stabilization ponds to treat municipal waste water, with resource recovery from fish farming and selling sludge for fertilizer. The ultimate aim is to demonstrate systems that can be adpoted and run by communities, particularly in urban West Africa. The pilot project is based in Cotonou, Benin.
This project aims at the production of guidelines for the safe design of revetments, which are often constructed manually by local farmers, with little engineering input.