Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort descending Principal Supervisor Research Institutes Project Summary
IDCORE: Industrial Doctoral Centre in Offshore Renewable Energy

Professor David Ingram

Energy Systems

The drive to meet the UK’s ambitious deployment targets for offshore renewable energy technologies requires the development of new techniques and technologies to design, build, install, operate, and maintain devices in hostile environments at affordable economic cost with minimal environmental impact. It requires a supply of highly trained scientists and engineers to deliver their skills across the sector. The Universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford form a partnership to deliver the EPSRC/ETI Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

IFPRI Grindability Project: modelling, measurement and mill fingerprinting

Prof. Jin Ooi

Infrastructure and Environment

This project aims to develop a robust methodology to characterise the grindability of particulate products in milling operations which will in turn provide a step-change in mill fingerprinting and optimisation.  This involves developing a “grindability test” to measure the comminution characteristics of the particulates which, when coupled with the computational modelling work to characterise the milling function, will evaluate the milling performance measures including energy utilisation, breakage kernels for scale-up modelling such as population balance model of the mill.

IMPACT: Implantable Microsystems for Personalised Anti-Cancer Therapy

Professor Alan Murray


IMPACT is a 5-year, £5.2M research project, funded by an EPSRC Programme Grant, to develop new approaches to cancer treatment, using implanted, smart sensors on silicon, fabricated in the University's Scottish Microelectronics Centre. IMPACT will use miniaturised, wireless sensor chips the size of a grass seed to monitor the minute-to-minute status of an individual tumour. This will allow RT to be targeted in space and time to damage cancer cells as much as possible. The team consists of engineers, chemists, veterinary clinicians, social scientists and human cancer specialists, led by Prof Alan Murray from the University's School of Engineering.


Ice-Rubber Friction for Tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to gain a better understanding of the nature of the interface between rubber and ice. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on ice.

In-situ Chemical Measurement and Imaging Diagnostics for Energy Process Engineering

Prof Hugh McCann and Prof Walter Johnstone

Imaging, Data and Communications

The primary focus of the programme proposed here is to build across two universities (Strathclyde and Edinburgh) a world leading UK research, development and applications capability in the field of in-situ chemical and particulate measurement and imaging diagnostics for energy process engineering. Independently, the two university groups already have globally eminent capabilities in laser-based chemical and particulate measurement and imaging technologies. They have recently been working in partnership on a highly complex engineering project (EPSRC FLITES) to realise a chemical species measurement and diagnostic imaging system (7m diameter) that can be used on the exhaust plume of the largest gas turbine (aero) engines for engine health monitoring and fuels evaluation. Success depended on the skills acquired by the team and their highly collaborative partnership working. A key objective is to keep this team together and to enhance their capability, thus underpinning the research and development of industrial products, technology and applications. The proposed grant would also accelerate the exploitation of a strategic opportunity in the field that arises from the above work and from recent recruitment of academic staff to augment their activities. The proposed programme will result in a suite of new (probably hybrid) validated, diagnostic techniques for high-temperature energy processes (e.g. fuel cells, gas turbine engines, ammonia-burning engines, flame systems, etc.). 

Influence of snow structure and properties on the grip of winter tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to investigate the friction of rubber and tyre treads on snow. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on snow.

Intelligent Egress: Real time modelling based upon sensor data to steer evacuation in case of fire

Dr Stephen Welch

Infrastructure and Environment

Intelligent egress is a novel approach to enhancing evacuations from fire emergencies.  It combines sensor-linked simulations and route-planning tools to provide real-time information to occupants on efficient egress.  The specific issues associated with disabilities and mobility impairment are addressed.  Mechanisms to provide “way finding” information to relevant end users are being studied.  Detailed guidance and recommendations on use of such systems will be developed.

Investigating the micromechanics of granular soils subjected to cyclic loading using the discrete element method

Dr Kevin Hanley

Infrastructure and Environment

The objective of this research is to investigate the behavior of Dunkerque sand under undrained triaxial cyclic loading using the discrete element method (DEM).

Investigation of particle breakage of dry granular materials using x-ray computed tomography and the DEM

Prof. Jin Ooi

Infrastructure and Environment

When a load is applied to an assembly of particles and particle breakage occurs, the macroscopic behaviour of the assembly is greatly affected by changes in the micro-scale caused by breakage. In this project particle breakage is studied in 3D using x-ray tomography and simulating the process with the DEM.

Joint Experimental Investigation of two-phase flows in microscale

Professor Khellil Sefiane

Multiscale Thermofluids

The proposal aims to advance the use of microchannels based cooling technology by solving major outstanding issues.


Subscribe to Research Projects