Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisorsort ascending Research Institutes Project Summary
Modelling of dense suspensions rheology

Dr. Jin Sun

Infrastructure and Environment

We examine the rheology of granular dense suspensions using computer simulations with discreste particles and develop constitutive models for flow of such suspensions.

Dense suspension rheology through DEM simulations

Dr. Jin Sun

Infrastructure and Environment

Mud, slurry, coffee, paints, cements, batteries and many other everyday materials have particles suspended in a liquid. We need to understand the flow behaviour to handle, and process such materials for traditional and innovative applications. Our research seeks to understand the common features of the flow behaviour of different materials using simple particle based simulations. In particular, we focus on dense suspensions where the particles occupy more than 50 % by volume of the solution.

Ice-Rubber Friction for Tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to gain a better understanding of the nature of the interface between rubber and ice. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on ice.

Influence of snow structure and properties on the grip of winter tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to investigate the friction of rubber and tyre treads on snow. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on snow.

The Edinburgh Fluid Dynamics Group

Dr Ignazio Maria Viola

Energy Systems

The Edinburgh Fluid Dynamics Group (EFDG) webpage can be found below:  

On the Leading Edge Vortex in Highly Turbulent Flow Conditions

Dr Ignazio Maria Viola

Energy Systems

Bio-inspired foils for low-speed performance of renewable energy converters

Development of H2 PSA (99.9% purity and 85+% recovery) Integrated with a Pre-Combustion IGCC and its Integrated Efficiency evaluation

Dr Hyungwoong Ahn

Materials and Processes

This project is aimed to develop a novel process for producing ultrapure hydrogen from synthesis gas originating from coal gasification. The coal-to-H2 process is integrated with a pre-combustion carbon capture process for de-carbonising the syngas and the integration results in improving H2 yield at the H2 Pressure Swing Adsorption (PSA).

EURECA - Effects of utilisation in real-time on electricity capacity assessments

Dr Hannah Chalmers

Energy Systems

EURECA, the Effects of Utilisation in Real-time on Electricity Capacity Assessments, investigates the operating regimes of thermal power plants in future generation portfolios with large amounts of variable renewable energy sources (VRE). The impacts of additional VRE and energy storage capacity on the operating profiles and flexibility of thermal power plans are investigated using a unit commitment and energy storage optimisation model.

COPTIC: Co-optimisation of CO2 transport, injection and capture

Dr Hannah Chalmers

Energy Systems Statement of the Project Development of a very sound expertise on CO2 transportation infrastructure Identification and understanding of uncertainties during integration of CO2 capture, compression, injection and reservoir units together with CO2 transportation system Provide industry and academia with the required technical knowhow in this context
Development and Evaluation of Sustainable Technologies for Flexible Operation of Conventional Power Plants

Dr Hannah Chalmers

Energy Systems

The increasing amounts of renewable energy present on the national grid reduce C02 emissions caused by electrical power but they fit into an electrical grid designed for fossil fuels. Fossil fuels can be turned on and off at will and so are very good at matching variations in load. Renewable energy in the form of wind turbines is more variable (although that variability is much more predictable than most people think) and there is a need for existing power plants to operate much more flexibly to accommodate the changing power output from wind, tidal and solar power.

Pages

Subscribe to Research Projects