All Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute or Research Theme.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
  • Impact of increasing penetration of electrical vehicles and photovoltaic installations on power quality in public low voltage distribution networks

    Research Themes: 

    • Power Systems
  • Enhanced oil/gas recovery and CO2 storage are a displacement process at pore scale, in which oil and gas are displaced by water or CO2 in reservoir at pore scale, or water is displaced by CO2 in aquifers at pore scale. This displacement is controlled by pore structure, pore wettability, pore surface chemistry, fluid viscosity and interfacial interaction between pore fluids and pore surfaces. The displacement controls the pore connectivity, therefore oil/gas recovery and CO2 storage capacity. We investigate the displacement and the effect of various factors on the displacement at pore scale and core scale.

    Research Themes: 

    • Multiphase Flows and Transport Phenomena
  • FASTBLADE is commencing construction - see our facility site here.

    The Structural Composites Research Facility (SCRF) is funded by a strategic equipment grant (EP/P029922/1). The grant started on the 1st of June 2017 and is due to complete on the 30sh of November 2020. The SCRF is to be setup as a Small Research Facility (SRF) and has been given the name FASTBLADE.

    FASTBLADE will offer a suite of experimental and testing services to meet every client’s needs. The team can offer bespoke solutions to match every user’s needs and are supported by the world renown expertise and knowledge within the School of Engineering, University of Edinburgh.

    Research Themes: 

    • Offshore Renewable Energy
    • Structural Engineering
    • Materials and Structures
    • Institute for Materials and Processes Themes
  • FASTBLADE is commencing construction - see our facility site here.

    The Structural Composites Research Facility (SCRF) is funded by a strategic equipment grant (EP/P029922/1). The grant started on the 1st of June 2017 and is due to complete on the 30sh of November 2020. The SCRF is to be setup as a Small Research Facility (SRF) and has been given the name FASTBLADE.

    FASTBLADE will offer a suite of experimental and testing services to meet every client’s needs. The team can offer bespoke solutions to match every user’s needs and are supported by the world renown expertise and knowledge within the School of Engineering, University of Edinburgh.

    Research Themes: 

    • Offshore Renewable Energy
    • Structural Engineering
    • Materials and Structures
    • Institute for Materials and Processes Themes
  • The FLITES consortium aims to enhance turbine-related R&D capacity in both academia and industry by opening up access to exhaust plume chemistry with penetrating spatio-temporal resolution. This will underpin a new phase of low-net-carbon development that is already underway in aviation, based on bio-derived fuels, entailing extensive R&D in turbine engineering and combustion, and fuel product formulation.

    Research Themes: 

    • Tomography
    FLITES logo
  • The FLOWBEC project aims to improve the understanding of how the physical behaviour of the water such as currents, waves and turbulence at tide and wave energy sites influences the behaviour of marine wildlife, and how tide and wave energy devices might alter the behaviour of such wildlife.

    Research Themes: 

    • Offshore Renewable Energy
  • New ideas for carbon capture are urgently needed to combat climate change. Retro-fitting post-combustion carbon capture to existing power plants has the greatest potential to reduce CO2 emissions considering these sources make the largest contribution to CO2 emissions in the UK. Unfortunately, carbon capture methods based on existing industrial process technology for separation of CO2 from natural gas streams (i.e. amine scrubbing) would be extremely expensive if applied on the scale envisaged, as exemplified by the recent collapse of the Government's CCS project at Longannet power station. Moreover, many of the chemical absorbents used, typically amines, are corrosive and toxic and their use could generate significant amounts of hazardous waste. So, more efficient and 'greener' post-combustion CCS technologies are urgently needed if CCS is to be adopted on a global scale.

    Research Themes: 

    • Carbon Capture and Separation Processes
  • Exposed structural timber elements within a compartment creates an additional fuel load which must be considered in design. This research focuses on quantifying this additional fuel load, and understanding conditions where after burnout of the compartment contents, the additional exposed timber may stop burning (auto-extinguish). 

    Research Themes: 

    • Fire Safety Engineering
    Timber compartment fire test

Pages

Subscribe to All Research Projects